On estimation of high quantiles for certain classes of distributions
DOI:
https://doi.org/10.2298/YJOR130606013SKeywords:
high quantile estimation, negative dependence, the Pareto distribution, gamma distributionAbstract
We investigate the rate of convergence of the direct-simulation estimator ˆ xp(n) of a large quantile xp of the Pareto and Gamma distributions. The upper bound of the probability P{|xp(n)- xp|>ε is determined.References
Aoyama Hideaki, Wataru Souma, and Fujiwara Yoshy, ”Growth and fluctuations of personal and company’s income”, Physica A: Statistical Mechanics and its Applications, 324(1-2)(2003)352-358.
Bain, L.J. and Engelhardt, M., Statistical Analysis of Reliability and Life-Testing Models, 2nd. Edition, Marcel and Dekker, New York, (1991).
Barndor-Nielsen, O.E, Mikosch, T. and Resnick, S.I., Lvy processes: theory and applications, Birkhauser, (2001).
Champernowne, D., ”A model of income distribution”, Economic Journal, 63 (1953) 318-351.
Dekkers, A.R.M and de Haan, L., ”On the estimation of the extreme value index and large quantile estimation”, Annals of Statistics, 17(4) (1989) 1795-1832.
Embrechts, P., Kluppelberg, C., and Mikosch, T., Modelling Extremal Events for Insurance and Finance, Springer, (1997).
Feldman, D., and Tucker, H.G., ”Estimation of non-unique quantiles”, Annals of Mathematical Statistics, 37 (1966) 451-457.
Fujiwara Yoshy, Hideaki Aoyama, Corrado Di Guilmi, Wataru Souma, Mauro Gallegati, ”Gibrat and Pareto¢Zipf revisited with European firms”, Physica A: Statistical Mechanics and its Applications, 344(1-2) (2004) 112-116.
Jovanović, M, and Rajić, V., ”Estimation of P[X < Y] for Gamma exponential model”, Jugoslav Journal of Operations Research 24(2) (2014) 283-291.
Levy M., ”Market efficiency, the Pareto wealth distribution, and the Levy distribution of stock returns, The Economy as an evolving Complex System III, Oxford University Press, (2005).
Levy, M. and Solomon, S., ”New evidence for the power-law distribution of wealth”, Physica A, 242 (1997) 90-94.
Madan, D.B., and Seneta, E., ”The Variance Gamma model for share market returns”, Journal of Business, 63 (1990) 511-524.
Matthus, G., and Beirlant, J., ”Estimating the extreme value index and high quantiles with exponential regression models”, Statistica Sinica, 13 (2003) 853-880.
Nadarajah, S. and Kotz, S., ”On the convolution of Pareto and Gamma distributions”, Computer Networks, 51(12) (2007) 3650-3654.
Quandt, R.E, ”Old and New Methods of Estimation and the Pareto Distribution”, Metrika, 10(1) (1966) 55-82.
Reed, W.J., ”The Pareto, Zipf and other power laws”, Economics Letters, 74(1) (2001) 15-19.
Schiryaev, A.N., ”Essentials of Stochastic Finance: facts, models, theory”, World Scientific Publishing Co.Pte.Ltd., (1999).
Singh, S.K., and Maddala, G.S., ”A Function for Size Distribution of Incomes”, Econometrica, 44(5) (1976) 963-970.
Xing Jin and Michael C. Fu, ”A Large Deviations Analysis of Quantile Estimation with Application to Value at Risk”, MIT Operations Research Center Seminar Series, (2002).
Downloads
Published
Issue
Section
License
Copyright (c) 2015 YUJOR
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.