On invex programming problem in Hilbert spaces
DOI:
https://doi.org/10.2298/YJOR141015010CKeywords:
invexity, compactness, weak topology, Frechet derivativeAbstract
In this paper we introduce the invex programming problem in Hilbert space. The requisite theory has been established to characterize the solution of such class of problems.References
Avriel, M., Nonlinear Programming: Analysis and Methods, Prentice Hall, New Jersey, 1976.
Barbu, V., Precupanu, T., Convexity and Optimization in Banach Spaces, Springer, New York, 2012.
Bauschke, H.H., Combettes, P.L., Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, 2011.
Berkovitz, L.D., Convexity and Optimization in Rn, John Wiley and Sons, New York, 2002.
Bertsekas, D.P., Convex Optimization Theory, Athena Scientific, Massachusetts, 2009.
Ben-Israel, A., Mond, B., “What is Invexity?”, Journal of Australian Mathematical Society, Ser.B, 28(1)(1986)1-9.
Ben-Tal, A., “On Generalized Means and Generalized Convex Functions”, Journal of Optimization Theory and Applications, 21(1977)1-13.
Benyamini, Y., Lindenstrauss, J., Geometric Non-Linear Functional Analysis, Vol.-1, American Mathematical Society, Colloquium Publications, Rhode Island, 2000.
Borwein, J.M., Lewis, A.S., Convex Analysis and Nonlinear Optimization, Springer, New York, 2006.
Boyd, S., Vandenberghe, L., Convex Optimization, Cambridge University Press, Cambridge, 2004.
Craven, B.D., “Invex Functions and Constrained Local Minima”, Bulletin of the Australian Mathematical Society, 24(1981)1-20.
Craven, B.D., Glover, B.M., “Invex Functions and Duality”, Journal of Australian Mathematical Society. Ser. A, 39(1985)1-20.
Fortmann, T.E., Athans, M., “Filter Design Subject to Output Sidelobe Constraints: Theoretical Considerations”, JOTA, 14(1974)179-198.
Hanson, M.A., “On Sufficiency of Kuhn-Tucker Conditions”, Journal of Mathematical Analysis and Applications, 80(1981)545-550.
Hiriart-Urruty, J.B., Lamerachal, C., Fundamentals of Convex Analysis, Springer, New York, 2001.
Jeyakumar, V., Mond, B., “On Generalized Convex Mathematical Programming”, Journal of Australian Mathematical Society, Series B, 34(1992)43-53.
Luenberger, D.G., Optimization by Vector Space Methods, John Wiley and Sons, New York, 1969.
Luu, D.V., Ha, N.X., “An Invariant Property of Invex Functions and Applications”, Acta Mathematica Vietnamica, 25(2000)181-193.
Martin, D.H., “The Essence of Invexity”, JOTA, 47(1)(1985)65-76.
Mishra, S.K., Giorgi, G., Invexity and Optimization, Springer-Verlag, Heidelberg, 2008.
Mititelu, Stefan, “Invex Sets and Preinvex Functions”, Journal of Advanced Mathematical Studies, 2(2)(2009)41-52.
Pini, R., “Invexity and Generalized Convexity”, Optimization, 22(4)(1991)513-525.
Rockafellar, R.T., Convex Analysis, Princeton University Press, 1970.
Tiel, J.V., Convex Analysis-An Introductory Text, John Wiley and Sons, New York, 1984.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 YUJOR
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.