Optimality and duality for nonsmooth semi-infinite multiobjective programming with support functions
DOI:
https://doi.org/10.2298/YJOR170121010SKeywords:
nonsmooth semi-infinite multiobjective optimization, generalized convexity, dualityAbstract
In this paper, we consider a nonsmooth semi-infinite multiobjective programming problem involving support functions. We establish sufficient optimality conditions for the primal problem. We formulate Mond-Weir type dual for the primal problem and establish weak, strong and strict converse duality theorems under various generalized convexity assumptions. Moreover, some special cases of our problem and results are presented.References
Antczak, T., Singh, V., "Optimality and duality for minmax fractional programming with support functions under B-(p, r)-Type I assumptions", Mathematical and Computer Modelling, 57 (2013) 1083-1100.
Bae, K. D., Kim, D. S., "Optimality and duality theorems in nonsmooth multiobjective optimization", Fixed Point Theory and Applications, 42 (2011), doi:10.1186/1687-1812-2011-42.
Caristi, G., Ferrara, M., Stefanescu, A., "Semi-infinite multiobjective programming with generalized invexity", Mathematical Report, 12 (2010) 217-233.
Craven, B. D., "Invex functions and constrained local minima", Bulletin of the Australian Mathematical Society, 24 (1981) 357-366.
Clarke, F. H., "Optimization and Nonsmooth Analysis", Wiley-Interscience, New York, 1983.
Chandra, S., Craven, B. D., Mond, B., "Generalized concavity and duality with a square root term", Optimization, 16 (1985) 653-662.
Chuong, T. D., Kim, S. D., "Nonsmooth semi-infinite multiobjective optimization problems", Journal of Optimization Theory and Applications, 160 (2014) 748-762.
Goberna, M. A., Lopez, M. A., "Linear Semi-Infinite Optimization", Wiley Chichester, 1998.
Goberna, M. A., Lopez, M. A., "Linear semi-infinite programming theory, An updated survey", European Journal of Operational Research, 143 (2002) 390-405.
Hanson, M. A., "On sufficiency of the Kuhn-Tucker conditions", Journal of Mathematical Analysis and Applications, 80 (1981) 545-550.
Hettich, R., Haaren, E., Ries, M., Still, G., "Accurate numerical approximations of eigenfrequencies and eigenfunctions of elliptic membranes", Journal of Applied Mathematics and Mechanics, 67 (1987) 589-597.
Hettich, R., Kortanek, K. O., "Semi-infinite programming: theory, methods and applications", SIAM Review, 35 (1993) 380-429.
Husain, I., Abha, Jabeen, Z., "On nonlinear programming with support functions", Journal of Applied Mathematics and Computing, 10 (2002) 83-99.
Husain, I., Jabeen, Z., "On fraction programming containing support functions", Journal of Applied Mathematics and Computing, 18 (2005) 361-376.
Jayakumar, V., Mond, B., "On generalized convex mathematical programming problem", Journal of the Australian Mathematical Society. Series B., 34 (1992) 43-53.
Kropat, E., Pickl, S., Rössler, A., Weber, G. W., "A new algorithm from semi-infinite optimization for a problem of time-minimal control", Computational Technologies, 5 (4)(2000) 67-81.
Kanzi, N., "Necessary optimality conditions for nonsmooth semi-infinite programming problems", Journal of Global Optimization, 49 (2011) 713-725.
Kanzi, N., Nobakhtian, S., "Optimality conditions for nonsmooth semi-infinite programming", Optimization, 53 (2008) 717-727.
Kanzi, N., Nobakhtian, S., "Optimality conditions for nonsmooth semi-infinite multiobjective programming", Optimization Letters, 8 (2014) 1517-1528.
Kostyukova, O. I., Tchemisova, T. V., "Sufficient optimality conditions for convex semi-infinite programming", Optimization Methods and Software, 25 (2)(2010) 279-297.
Kim, D. S., Bae, K. D., "Optimality conditions and duality for a class of nondi erentiable multiobjective programming problems", Taiwanese Journal of Mathematics, 13 (2)(2009) 789-804.
Kim, D. S., Lee, H. J., "Optimality conditions and duality in non-smooth multiobjective programs", Journal of Inequalities and Applications, (2010) doi:10.1155/2010/939537.
Lopez, M. A., Still, G., "Semi-infinite programming", European Journal of Operational Research, 180 (2007) 491-518.
Mishra, S. K., Jaiswal, M., Le Thi, H. A., "Duality for nonsmooth semi-infinite programming problems", Optimization Letters, 6 (2012) 261-271.
Mishra, S. K., Jaiswal, M., "Optimality conditions and duality for nondi erentiable multiobjective semi-infinite programming", Vietnam Journal of Mathematics, 402&3 (2012) 331-343.
Mishra, S. K., Giorgi, G., "Invexity and Optimization", Springer-Verlag Berlin Heidelberg, 2008.
Mishra, S. K., Wang, S. Y., Lai, K. K., "Generalized Convexity and Vector Optimization", Springer-Verlag Berlin Heidelberg, 2009.
Mond, B., Schechter, M., "A programming problem with an Lp norm in the objective function", Journal of the Australian Mathematical Society. Series B., 19 (1976) 333-342.
Mond, B., Schechter, M., "A duality theorem for a homogeneous fractional programming problem", Journal of Optimization Theory and Applications, 25 (1978) 349-359.
Mond, B., Schechter, M., "Nondi erentiable symmetric duality", Bulletin of the Australian Mathematical Society, 53 (2)(1996) 177-188.
Mond, B., "A class of nondi erentiable mathematical programming problems", Journal of Mathematical Analysis and Applications, 46 (1974) 169-174.
Preda, V., "On generalized convexity and duality with a square root term", Zeitschrift für Operations Research, 36 (1992) 547-563.
Preda, V., Köller, E., "Duality for a nondi erentiable programming problem with a square root term", Revue Roumaine de Mathématiques Pures et Appliquées, 45 (2000) 873-882.
Reemtsen, R., Rückmann, J. J., "Semi-infinite programming nonconvex optimization and its applications", Kluwer Academic Publishers, Boston, 1998.
Singh, C., "Nondi erentiable fractional programming with Hanson-Mond classes of functions", Journal of Global Optimization, 49 (1986) 431-447.
Son, T. Q., Strodiot, J. J., Nguyen, V. H., "ε-optimality and ε-Lagrangian duality for a nonconvex programming problem with an infinite number of constraints", Journal of Global Optimization, 141 (2009) 389-409.
Son, T. Q., Kim, D. S., "ε-mixed type duality for nonconvex multiobjective programs with an infinite number of constraints", Journal of Global Optimization, 57 (2013) 447-465.
Zhang, J., Mond, B., "Duality for a class of nondi erentiable fractional programming problems", International Journal of Management & Information Systems, 14 (1) (1998) 71-88.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 YUJOR
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.