On (λ,μ)- Zweier ideal convergence in intuitionistic fuzzy normed space

Authors

  • Vakeel A. Khan Department of Mathematics, Aligarh Muslim University, Aligarh, India
  • Mobeen Ahmad Department of Mathematics, Aligarh Muslim University, Aligarh, India

DOI:

https://doi.org/10.2298/YJOR191115006K

Keywords:

Ideal convergence, Zweier Operator, (λ,μ)- convergence, intuitionistic fuzzy normed spaces

Abstract

In this paper, we study and introduce a new type of convergence, namely (λ,μ)- Zweier convergence and (λ,μ)- Zweier ideal convergence of double sequences x = (xij) in intuitionistic fuzzy normed space (IFNS), where λ = (λn) and μ= (μm) are two non-decreasing sequences of positive real numbers such that each tending to infinity. Furthermore, we studied (λ,μ)- Zweier Cauchy and (λ,μ)- Zweier ideal Cauchy sequences on the said space and established a relation between them.

References

Atanassov, K., "Intuitionistic fuzzy sets", Fuzzy Sets and Systems, 20 (1986) 87-96.

Barros, L.C., Bassanezi, R.C., Tonelli, P.A., "Fuzzy modelling in population dynamics", Ecological Modelling, 128 (2000) 27-33.

Et, M., Karakas, M., Cinar, M., "Some geometric properties of a new modular space defined by Zweier operator", Fixed Point Theory Applications, 165 (2013) 10.

Fadile, K.Y., Esi, A., "On some strong Zweier convergent sequence spaces", Acta Universitatis Apulensis, 29 (2012) 9-15.

Fast, H., "Sur la convergence statistique", Colloquium Mathematicae, 2 (1951) 241-244.

Fradkov, A.L., Evans, R.J., "Methods and applications in engineering", Chaos Solitons Fractals, 29 (2005) 33-56.

Fridy, J.A., "Statistical limit points", Proceedings of the American Mathematical Society, 118 (1993) 1187-1192.

Giles, R., "A computer program for fuzzy reasoning", Fuzzy Sets and Systems, 4 (1980) 221-234.

Hazarika, B., Tamang, K., Singh, B.K., "On Paranorm Zweier ideal convergent sequence spaces defined by Orlicz function", Journal of the Egyptian Mathematical Society, 22 (3) (2014) 413-419.

Hazarika, B., Tamang, K., Singh, B.K., "Zweier ideal convergent sequence spaces defined by Orlicz function", Journal of Mathematics and Computer Science, 8 (3) (2014) 307-318.

Hazarika, B., Tamang, K., "On Zweier statistically convergent sequences of fuzzy numbers and de la Vallée-Poussin mean of order", Annals of Fuzzy Mathematics and Informatics, 11 (4) (2016) 541-555.

Hazarika, B., Kumar, V., Lafuerza-Guillen, "Generalized ideal convergence in intuitionistic fuzzy normed linear spaces", Filomat, 27 (5) (2013) 811-820.

Hazarika, B., Kumar, V., Lafuerza-Guillen, "Generalized ideal convergence in intuitionistic fuzzy normed linear spaces", Filomat, 27 (5) (2013) 811-820.

Hong, L., Sun, J.Q., "Bifurcations of fuzzy nonlinear dynamical systems", Communications in Nonlinear Science and Numerical Simulation, 1 (2006) 1-12.

Khan, V.A., Ahmad, M., Hira, F., Khan, M.F., "On some results in intuitionistic fuzzy ideal convergence double sequence spaces", Advances in Difference Equations, 375 (2019) 1-10.

Khan, V.A., Ebadullah, K., "On some new I-convergent sequence space", Mathematics, Aeterna, 3 (2) (2013) 151-159.

Khan, V.A., Khan, N., "On Zweier I-convergent Double Sequence Spaces", Filomat, 30 (12) (2016) 3361-3369.

Klement, E.P., Mesiar, R., Pap, E., "Triangular norms. Position paper I: basic analytical and algebraic properties", Fuzzy Sets and Systems, 143 (2004) 5-26.

Kumar, V., Mursaleen, M., "On (λ,μ)-statistical convergence of double sequence on intuitionistic fuzzy normed spaces", Filomat, 25 (2) (2011) 109-120.

Kostyrko, P., Salat, T., Wilczynski, W., "I-convergence", Real Analysis Exchange, 26 (2) (2000) 669-686.

Leindler, L., "Uber die de la Vallee-Pousnsche Summierbarkeit allge meiner orthogonal reihen", Acta Mathematica Hungarica, 16 (1965) 375-387.

Mursaleen, M., Cakan, C., Mohiuddine, S.A., "Generalized statistical convergence and statistical core of double sequences", Acta Mathematica Sinica, English series, 26 (11) (2010) 2131-2144.

Mursaleen, M., "-Statistical convergence", Mathematica Slovaca, 50 (2000) 111-115.

Mursaleen, M., Mohiuddin, S.A., "Statistical convergence of double sequences in intuitionistic fuzzy normed spaces", Chaos, Solitons Fractals, 41 (2009) 2414-2421.

Nuray, F., Rhoades, B.E., "Statistical convergence of sequence sets", Fasciculi Mathematici, 49 (2012) 87-99.

Park, J.H., "Intuitionistic fuzzy metric space", Chaos Solitons Fractals, 22 (2004) 1039-1046.

Saadati, R., Park, J.H., "On the intuitionistic fuzzy topological spaces", Chaos Solitons Fractals, 27 (2006) 331-344.

Savas, E., Das, P., "A generalized statistical convergence via ideals", Applied Mathematics Letters, 24 (2011) 826-830.

Steinhaus, H., "Sur la Convergence Ordinaire et la Convergence Asymptotique", Colloquium Mathematicum, 2 (1951) 73-74.

Salat, T., Tijdeman, R., "On statistically convergent sequences of real numbers", Mathematica Slovaca, 30 (1980) 139-150.

Salat, T., Tripathy, B.C., Ziman, M., "On I-convergence field", Italian Journal of Pure and Applied Mathematics, 17 (2005) 45-54.

Sengonul, M., "On the Zweier sequence space", Demonstratio Mathematica, (4) (2007) 181-196.

Sengonul, M., "On the Zweier Sequence Spaces of Fuzzy Number", Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences, Article ID 439169, (2014) 1-9.

Tripathy, B.K., Tripathy, B.C., "On I-Convergent double sequences", Soochow Journal of Mathematics, 31 (4) (2005) 549-560.

Zadeh, L.A., "Fuzzy sets", Inform Control, (8) (1965) 338-353.

Downloads

Published

2020-11-01

Issue

Section

Research Articles