Set-valued optimization problems via second-order contingent epiderivative

Authors

  • Koushik Das Department of Mathematics, Taki Government College, Taki, West Bengal, India
  • Chandal Nahak Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India

DOI:

https://doi.org/10.2298/YJOR191215041D

Keywords:

Convex cone, Set-valued map, Contingent epiderivative, Duality

Abstract

In this paper, we establish second-order KKT conditions of a set-valued optimization problem and study second-order Mond-Weir, Wolfe, and mixed types duals with the help of second-order contingent epiderivative and second-order generalized cone convexity assumptions.

References

Aubin, J. P., "Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions", in: Mathematical Analysis and Applications, Part A, L. Nachbin (ed.), Academic Press, New York, 160-229, 1981.

Aubin, J. P., Frankowska, H., "Set-Valued Analysis", Birhauser, Boston, 1990.

Borwein, J., "Multivalued convexity and optimization: a unified approach to inequality and equality constraints", Mathematical Programming, 13 (1) (1977) 183-199.

Cambini, A., Martein, L., Vlach, M., "Second order tangent sets and optimality conditions", Mathematica Japonica, 49 (3) (1999) 451-461.

Das, K., Nahak, C., "Sufficient optimality conditions and duality theorems for set-valued optimization problem under generalized cone convexity", Rendiconti del Circolo Matematico di Palermo, 63 (3) (2014) 329-345.

Das, K., Nahak, C., "Sufficiency and duality of set-valued optimization problems via higher order contingent derivative", Journal of Advanced Mathematical Studies, 8 (1) (2015) 137-151.

Das, K., Nahak, C., "Optimality conditions for approximate quasi efficiency in set-valued equilibrium problems", SeMA Journal, 73 (2) (2016) 183-199.

Das, K., Nahak, C., "Set-valued fractional programming problems under generalized cone convexity", Opsearch, 53 (1) (2016) 157-177.

Das, K., Nahak, C., "Approximate quasi efficiency of set-valued optimization problems via weak subdifferential", SeMA Journal, 74 (4) (2017) 523-542.

Das, K., Nahak, C., "Optimization problems with difference of set-valued maps under generalized cone convexity", Journal of Applied Mathematics and Informatics, 35 (12) (2017) 147-163.

Das, K., Nahak, C., "Set-valued minimax programming problems under generalized cone convexity", Rendiconti del Circolo Matematico di Palermo, 66 (3) (2017) 361-374.

Das, K., Nahak, C., "Optimality conditions for set-valued minimax fractional programming problems", SeMA Journal, 77 (2) (2020) 161-179.

Das, K., Nahak, C., "Optimality conditions for set-valued minimax programming problems via second-order contingent epiderivative", Journal of Scientific Research, 64 (2) (2020) 313-321.

Das, K., Nahak, C., "Sufficiency and duality in set-valued optimization problems under (pr)-(p)-invexity", Acta Universitatis Apulensis, 62 (2020) 93-110.

Das, K., Nahak, C., "Sufficiency and duality of set-valued semi-infinite programming problems under generalized cone convexity", Acta Universitatis Matthiae Belii, series Mathematics, 2020 (2020) 95-111.

Jahn, J., "Vector Optimization: Theory, Applications, and Extensions", Springer-Verlag, Berlin, 2004.

Jahn, J., Khan, A., Zeilinger, P., "Second-order optimality conditions in set optimization", Journal of Optimization Theory and Applications, 125 (2) (2005) 331-347.

Jahn, J., Rauh, R., "Contingent epiderivatives and set-valued optimization", Mathematical Methods of Operations Research, 46 (2) (1997) 193-211.

Li, S. J., Teo, K. L., Yang, X. Q., "Higher-order Mond-Weir duality for set-valued optimization", Journal of Computational and Applied Mathematics, 217 (2) (2008) 339-349.

Luc, D. T., "Theory of Vector Optimization", Volume 319 of Lecture Notes in Economics and Mathematical Systems. Springer Verlag, Berlin, 1989.

Rodríguez-Marín, L., Sama, M., "About contingent epiderivatives", Journal of Mathematical Analysis and Applications, 327 (2) (2007) 745-762.

Sheng, B., Liu, S., "Kuhn-Tucker condition and Wolfe duality of preinvex set-valued optimization", Applied Mathematics and Mechanics- English edition, 27 (2006) 1655-1664.

Zhu, S. K., Li, S. J., Teo, K. L., "Second-order Karush-Kuhn-Tucker optimality conditions for set-valued optimization", Journal of Global Optimization, 58 (4) (2014) 673-692.

Downloads

Published

2021-02-01

Issue

Section

Research Articles