The application domain of difference type matrix D(r,0,s,0,t) on some sequence spaces
DOI:
https://doi.org/10.2298/YJOR200618032PKeywords:
β and γ duals, matrix transformation, schauder basisAbstract
We say that a regular graph G of order n and degree r ≥ 1 (which is not the complete graph) is strongly regular if there exist non-negative integers τ and θ such that |Si ∩ Sj | = τ for any two adjacent vertices i and j, and |Si ∩ Sj | = θ for any two distinct non-adjacent vertices i and j, where Sk denotes the neighborhood of the vertex k. Let λ1 = r, λ2 and λ3 be the distinct eigenvalues of a connected strongly regular graph. Let m1 = 1, m2 and m3 denote the multiplicity of r, λ2 and λ3, respectively. We here describe the parameters n, r, τ and θ for strongly regular graphs with m2 = qm3 and m3 = qm2 for q = 7/2 , 7/3 , 7/4 , 7/5 , 7/6 .References
Altay, B., & Basar, F. (2007). "Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space", Journal of Mathematical Analysis and Applications, 336(1), 632–645.
Altay, B., & Basar, F. (2007). "The matrix domain and the fine spectrum of the difference operator on the sequence space p,(0 < p < 1)", Communications in Mathematical Analysis, 2(2), 1–11.
Basar, F., Altay, B., & Mursaleen, M. (2008). "Some generalizations of the space bvp of p−bounded variation sequences", Nonlinear Analysis, 68(2), 273–287.
Chandra, P., & Tripathy, B.C. (2002). "On generalized K¨othe-Toeplitz duals of some sequence spaces", Indian Journal of Pure and Applied Mathematics, 33(8), 1301-1306.
Kamthan, P., & Gupta, P.K. (1981). "Sequence Spaces and Series", Marcel Dekker Inc., New York, Basel.
Khan, V.A., Ahmad, M., Hasan, S.N., & Ahmad, R. (2019). "I-Convergent Difference Sequence Spaces", Journal of Mathematical Analysis, 10(2), 58–68.
Khan, V.A., Rababah, R.K.A., Ahmad, M., Esi, A., & Idrisi, M.I. (2019). "I-Convergent Difference Sequence Spaces Defined by Compact Operator and Sequence of Moduli", ICIC Express Letters, 13(10), 907–912.
Kirisci, M., & Basar, F. (2010). "Some new sequence spaces derived by the domain of generalized difference matrix", Computers & Mathematics with Applications, 60, 1299–1309.
K¨othe, G., & Toeplitz, O. (1934). "Lineare Räume mit unendlich vielen Koordinaten und reigen unendlicher Matrizen", Journal für die reine und Angewandte Mathematik, 171, 193–226.
Maddox, I.J. (1980). "Infinite Matrices of Operators", Springer, Heidelberg, Germany.
Malkowsky, E., & Savas, E. (2004). "Matrix transformations between sequence spaces of generalized weighted means", Applied Mathematics and Computation, 147, 333–345.
Ng, P.N., & Lee, P.Y. (1978). "Cesaro sequence spaces of non-absolute type", Comment. Math. Prace Mat., 20(2), 429–433.
Rath, D., & Tripathy, B.C. (1996). "Matrix maps on sequence spaces associated with sets of integers", Indian Journal of Pure and Applied Mathematics, 27(2), 197–206.
Sönmez, A. (2011). "Some new sequence spaces derived by the domain of the triple band matrix", Computers & Mathematics with Applications, 62, 641–650.
Stieglitz, M., & Tietz, H. (1977). "Matrix transformationen von folgenräumen eine ergebnisübersicht", Mathematische Zeitschrift, 154, 1–16.
Tripathy, B.C., & Paul, A. (2013). "The spectrum of the operator D(r,0,0,s) over the sequence spaces c0 and c", Kyungpook Mathematical Journal, 53, 247–256.
Tripathy, B.C., & Paul, A. (2013). "The spectrum of the operator D(r,0,s,0,t) over the sequence spaces c0 and c", Journal of Mathematics, Volume 2013, Article ID 430965, 7 pages.
Tripathy, B.C., & Paul, A. (2015). "The spectrum of the operator D(r,0,s,0,t) over the sequence spaces p and bvp", Afrika Matematika, 26, 1137-1151.
Tripathy, B.C., & Sen, M. (2006). "Characterization of some matrix classes involving paranormed sequence spaces", Tamkang Journal of Mathematics, 37(2), 155–162.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 YUJOR
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.