On (λ,μ,ζ)-Zweier ideal convergence in intuitionistic fuzzy normed spaces

Authors

  • Carlos Granados Universidad de Antioquia, Medellín, Colombia, Estudiante de Doctorado en Matemáticas
  • Suman Das Department of Mathematics, Tripura University, Agartala, Tripura, India

DOI:

https://doi.org/10.2298/YJOR210517004G

Keywords:

Ideal convergence, Zweier operator, (α,μ,ζ)-convergence, Intuitionistic Fuzzy Normed Spaces

Abstract

In this paper, we introduce and study a new type of convergence which is namely (λ,μ,ζ)-Zweier convergence and (λ,μ,ζ)-Zweier ideal convergence of triple sequences x = (xijk) in intuitionistic fuzzy normed spaces (IFNS), where λ= (λn), μ = (μm) and ζ = (ζ p) are three non-decreasing sequences of positive real numbers such that each tend to infinity. Besides, we define and study (λ,μ,ζ)-Zweier Cauchy and (λ,μ,ζ)- Zweier ideal Cauchy sequences on the said space and establish some relations among Them. problem.

References

Atanassov, K., "Intuitionistic fuzzy sets", Fuzzy Sets and Systems, 20 (1) (1986) 87-96.

Barros, L. C., Bassanezi, R. C., and Tonelli, P. A., "Fuzzy modelling in population dynamics", Ecological modelling, 128 (1) (2000) 27-33.

Basar, F., and Altay, B., "On the spaces of sequences of p-bounded variation and related matrix mappings",Ukrainian Mathematical Journal, 55 (1) (2003) 136-147.

Battor, A., and Elaf, M., "Some result Zweier I-convergent triple sequence spaces defined by the double Orlicz functions", World Wide Journal of Multidisciplinary Research and Development, 4 (11) (2018) 76-80.

Et, M., Karakas M., and Cinar, M., "Some geometric properties of a new modular space defined by Zweier operator",Fixed point Theory Applications, 165 (1) (2013) 1-10.

Fadile, K. Y., and Esi, A., "On some strong Zweier convergent sequence spaces", Acta Universitatis Apulensis, 29 (1) (2012) 9-15.

Fast, H., "Sur la convergence statistique", Colloquium Mathematicae, 2 (3-4) (1951) 241- 244.

Fradkov A. L., and Evans, R. J., "Control of chaos: Methods and applications in engineering",Annual Reviews in Control, 29 (1) (2005) 33-56.

Fridy, J. A., "Statistical limit points", Proceedings of the American Mathematical Society, 118 (4) (1993) 1187-1192.

Giles, R., "A computer program for fuzzy reasoning", Fuzzy Sets and System, 4 (3) (1980) 221-234.

Granados, C., "A generalization of the strongly Cesaro ideal convergence through double sequence spaces", International Journal of Applied Mathematics, 34 (3) (2021) 525-533.

Granados, C., "Convergencia estadística en medida para sucesiones triples de funciones con valores difusos", Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, 45 (177) (2021) 1011-1021.

Granados, C., and Dhital, A., "Statistical Convergence of Double Sequences in Neutrosophic Normed Spaces", Neutrosophic Sets and Systems, 42 (2021) 333-344.

Granados, C., "New notions of triple sequences on ideal spaces in metric spaces", Advances in the Theory of Nonlinear Analysis and its Applications, 5 (3) (2021) 363-368.

Granados, C., Das, A.K., and Osu, B.O., "Mλm;n;p -statistical convergence for triple sequences", The Journal of Analysis, 30 (2022) 451-468.

Granados, C., and Das, A.K., "New Tauberian theorems for statistical Cesaro summability of function of three variables over a locally convex space", Armenian Journal of Mathematics, 14 (5) (2022) 1-15.

Granados, C., and Osu, B.O., "Wijsman and Wijsman regularly triple ideal convergence sequences of sets", Scientific African, 15 (2022) e01101.

Granados, C., Das A.K., and Das, S., "New Tauberian theorems for Cesaro summable triple sequences of fuzzy numbers", Kragujevac Journal of Mathematics, 48 (5) (2021) 787-802.

Hazarika, B., Tamang, K., and Singh, B. K., "On Paranorm Zweier ideal convergent sequence spaces defined by Orlicz function", Journal of the Egyptian Mathematical Society, 22 (3) (2014) 413- 419.

Hazarika, B., Tamang, K., and Singh, B. K., "Zweier ideal convergent sequence spaces defined by Orlicz function", Journal of Mathematics and Computer Science, 8 (3) (2014) 307- 318.

Hazarika, B., and Tamang, K., "On Zweier statistically convergent sequences of fuzzy numbers and de la Vallee-Poussin mean of order α", Annals of Fuzzy Mathematics and Informatics, 11 (4) (2016) 541-555.

Hong, L., and Sun, J. Q., "Bifurcations of fuzzy nonlinear dynamical systems",Communications in Nonlinear Science and Numerical Simulation, 11 (1) (2006) 1-12.

Khan, V. A., and Ebadullah, K., "On some new I-convergent sequence space",Mathematics, Aeterna, 3 (2) (2013) 151-159.

Khan, V. A., and Ahmad, M., "On (λ,μ)-Zweier ideal convergence in intuitionistic fuzzy normed space",Yugoslav Journal of Operations Research, 30 (4) (2020) 413-427.

Khan, V. K., Yasmeen, Fatima, H., and Ahamd, A., "Intuitionistic fuzzy Zweier I- convergent double sequence spaces defined by modulus function", Cogent Mathematics, 3 (1) (2016) 1235320.

Khan, V. A., Ahmad, M., Fatima, H., and Khan, M. F., "On some results in intuitionistic fuzzy ideal convergence double sequence spaces", Advances in Difference Equations, 375 (2019).

Khan, V. K., Yasmeen, Fatima, H., Altaf, H., and Lohani, D., "Intuitionistic fuzzy Zweier I-convergent sequence spaces defined by compact operator", Cogent Mathematics, 3 (1) (2016) 1267904.

Klement, E. P., Mesiar, R., and Pap, E., "Triangular norms. Position paper I: basic analytical and algebraic properties", Fuzzy sets and systems, 143 (1) (2004) 5-26.

Kostyrko, P., Salat, T. and Wilczynski, W., "I-convergence", Real Analysis Exchange, 26 (2) (2000) 669-686.

Leindler, L., "Uber die de la Vallee-Pousnsche Summierbarkeit allge meiner orthogonalreihen", Acta Mathematica Hungarica, 16 (1965) 375-387.

Mursaleen, M., "λ-Statistical convergence", Mathematica Slovaca, 50 (1) (2000) 111-115.

Nuray, F., and Rhoades, B. E., "Statistical convergence of sequence sets", Fasciculi Mathematici, 49 (2012) 87-99.

Park, J. H., "Intuitionistic fuzzy metric space", Chaos Solitons Fractals, 22 (5) (2004) 1039-1046.

Saadati, R., and Park, J. H., "On the intuitionistic fuzzy topological spaces", Chaos Solitons Fractals, 27 (2) (2006) 331-344.

Sahiner, A., and Tripathy, B. C., "Some I-related Properties of Triple Sequences", Selcuk Journal of Applied Mathematics, 9 (2) (2008) 9-18.

Savas, E., and Das, P., "A generalized statistical convergence via ideals", Applied Mathematics Letters, 24 (6) (2011) 826-830.

Steinhaus, H., "Sur la Convergence Ordinaire et la Convergence Asymptotique", Colloquium Mathematicum, 2 (1951) 73-74.

Salat, T., and Tijdeman, R., "On statistically convergent sequences of real numbers", Mathematica Slovaca, 30 (2) (1980) 139-150.

Salat, T., Tripathy, B. C., and Ziman, M., "On I-convergence field", Italian Journal of Pure and Applied Mathematics, 17 (2005) 45-54.

Sengonul, M., "On the Zweier sequence space",Demonstratio Math., 40 (1) (2007) 181-196.

Sengonul, M., "On the Zweier Sequence Spaces of Fuzzy Number", Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences, 2014 (2014) 1-9.

Tripathy, B. K. and Tripathy, B. C., "On I-Convergent double sequences", Soochow Journal of Mathematics, 31 (4) (2005) 549-560.

Zadeh, L. A., "Fuzzy sets", Information and Control, (8) (3) (1965) 338-353.

Downloads

Published

2022-05-01

Issue

Section

Research Articles