Computing the bounds on the loss rates

Authors

  • J.-M. Fourneau PRiSM, Université de Versailles Saint-Quentin, France
  • L. Mokdad LAMSADE, Université de Paris Dauphine, France
  • N. Pekergin CERMSEM, Université de Paris I Sorbonne, France

DOI:

https://doi.org/10.2298/YJOR0202167F

Keywords:

Discrete time Markov chains, tochastic bounds, ATM switch, loss rates.

Abstract

We consider an example network where we compute the bounds on cell loss rates. The stochastic bounds for these loss rates using simple arguments lead to models easier to solve. We proved, using stochastic orders, that the loss rates of these easier models are really the bounds of our original model. For ill-balanced configurations these models give good estimates of loss rates.

References

Beylot, A.L., "Modèles de trafics et de commutateurs pour l'évaluation de la perte et du délai dans les réseaux ATM", PhD thesis, Université Paris 6, 1993.

Doisy, M., "Comparison de processus Markoviens", PhD theses, Univ. de Pau et des Pays de l'Adour, 1992.

Fourneau, J.-M., Pekergin, N., and Taleb, H., "An application of stochastic ordering to the analysis of the push-out mechanism", in: D. Kouvatsos (ed.), Performance Modelling and Evaluation of ATM Networks, Chapman-Hall, London, 1995.

Grassman, W.K., Taksar, M.I., and Heyman, D.P., "Regenerative analysis and steady state distributions for Markov chains", Oper. Res., 13 (1985) 1107-1116.

Heymann, D.P., "Further comparisons of direct methods for computing stationary distributions of Markov chains", Siam J. Alg. Disc. Math., 8 (2) (1987) 226-232.

Plateau, B., "De l'évaluation du parallélisme et de la synchronisation", PhD thesis, Université Paris-Sud Orsay, 1984.

Stewart, W.J., Introduction to the Numerical Solution of Markov Chains, Princeton University Press, 1994.

Stoyan, D., Comparison Methods for Queues and Other Stochastic Models, Wiley, New York, 1983.

Truffet, L., "Méthodes de calcul de Bornes stochastiques sur des modèles de systèmes et de Réseaux", PhD thesis, Université Paris 6, 1995.

Downloads

Published

2002-09-01

Issue

Section

Research Articles