Quality of Service Attributes Based Hybrid Decision-Making Framework for Ranking Cloud Service Providers Under Fermatean Fuzzy Environment
DOI:
https://doi.org/10.2298/YJOR231215010AKeywords:
Cloud Computing, Cloud Service Providers, Fermatean Fuzzy Sets, MADM, FUCOM, Grey-TOPSISAbstract
Cloud Computing has gained substantial popularity due to its ability to offer diverse and dependable computing services suited to clients demands. Given the rapid expansion of this technology, an increasing number of IT service providers are competing to deliver cloud services that are both of excellent quality and cost-efficient, in order to best meet the requirements of their clients. With the extensive range of options available, selecting the best Cloud Service Provider (CSP) has become a challenging dilemma for the majority of cloud clients. When evaluating services offered by many CSPs, it is important to consider multiple attributes. Efficiently addressing the selection of the best CSP involves tackling a challenging Multi-Attribute Decision Making (MADM) problem. Several MADM techniques have been proposed in academic literature for evaluating CSPs. However, the persisting problems of inconsistency, uncertainty, and rank reversal remain unresolved. In this paper the authors present a hybrid MADM framework to rank eight CSPs using nine Quality of Service (QoS) attributes. In order to achieve this objective, Fermatean fuzzy sets-full consistency method (FFS-FUCOM) is combined with Grey–Relational–Analysis and the Technique–for–Order–Preference–by–Similarity–to–Ideal–Solution (Grey-TOPSIS) technique. The framework successfully resolved the aforementioned problems. Sensitivity analysis is conducted to assess the stability and robustness of the results produced by the proposed framework. The sensitivity analysis results indicate that the proposed framework offers an accurate and robust solution. A systematic ranking test is undertaken to ensure that the results are ranked in a systematic manner. Additionally, a comparative analysis is carried out with the most relevant study.References
S. M. Noble, M. Mende, D. Grewal, and A. Parasuraman, "The Fifth Industrial Revolution: How Harmonious Human-Machine Collaboration is Triggering a Retail and Service [R]evolution," Journal of Retailing, vol. 98, no. 2, pp. 199-208, 2022, doi: 10.1016/j.jretai.2022.04.003.
M. Azadi, Z. Moghaddas, T. C. E. Cheng, and R. Farzipoor Saen, "Assessing the sustainability of cloud computing service providers for Industry 4.0: a state-of-the-art analytical approach," International Journal of Production Research, vol. 61, no. 12, pp. 4196-4213, 2023, doi: 10.1080/00207543.2021.1959666.
S. S. Chauhan, E. S. Pilli, R. C. Joshi, G. Singh, and M. C. Govil, "Brokering in interconnected cloud computing environments: A survey," Journal of Parallel and Distributed Computing, vol. 133, pp. 193-209, 2019, doi: 10.1016/j.jpdc.2018.08.001.
A. Katal, S. Dahiya, and T. Choudhury, "Energy efficiency in cloud computing data centers: a survey on software technologies," Cluster Computing, vol. 26, no. 3, pp. 1845-1875, 2023, doi: 10.1007/s10586-022-03713-0.
S. Shiju George and R. Suji Pramila, "A review of different techniques in cloud computing," Materials Today: Proceedings, vol. 46, pp. 8002-8008, 2021, doi: 10.1016/j.matpr.2021.02.748.
M. Azadi, M. Toloo, F. Ramezani, R. F. Saen, F. K. Hussain, and H. Farnoudkia, "Evaluating efficiency of cloud service providers in era of digital technologies," Annals of Operations Research, Mar. 2023, doi: 10.1007/s10479-023-05257-x.
D. R. and S. R., "Cloud providers ranking and selection using quantitative and qualitative approach," Computer Communications, vol. 154, pp. 370-379, 2020, doi: 10.1016/j.comcom.2020.02.028.
R. R. Kumar, B. Kumari, and C. Kumar, "CCS-OSSR: A framework based on Hybrid MCDM for Optimal Service Selection and Ranking of Cloud Computing Services," Cluster Computing, vol. 24, no. 2, pp. 867-883, Jun. 2021, doi: 10.1007/s10586-020-03166-3.
N. Ghorui, A. Kumar, B. Sharma, C. Singh, D. Patel, and E. Raghavan, "Selection of cloud service providers using MCDM methodology under intuitionistic fuzzy uncertainty," Soft Computing, vol. 27, no. 5, pp. 2403-2423, Mar. 2023, doi: 10.1007/s00500-022-07772-8.
M. H. Nejat, H. Motameni, H. Vahdat-Nejad, and B. Barzegar, "Efficient cloud service ranking based on uncertain user requirements," Cluster Computing, vol. 25, no. 1, pp. 485-502, Feb. 2022, doi: 10.1007/s10586-021-03418-w.
E. Youssef, “An Integrated MCDM Approach for Cloud Service Selection Based on TOPSIS and BWM,” IEEE Access, vol. 8, pp. 71851-71865, 2020, doi: 10.1109/ACCESS.2020.2987111.
M. N. Armintor, “Amazon Web Services, the Lacanian Unconscious, and Digital Life,” CLCWeb: Comparative Literature and Culture, vol. 24, no. 4, Jan. 2023, doi: 10.7771/1481-4374.4273.
K. Junejo, I. A. Jokhio, and T. Jan, “A Multi-Dimensional and Multi-Factor Trust Computation Framework for Cloud Services,” Electronics (Basel), vol. 11, no. 13, p. 1932, Jun. 2022, doi: 10.3390/electronics11131932.
Alamleh, N. Ghorui, M. M. A. Salama, and H. M. R. Waqas, “Multi-Attribute Decision-Making for Intrusion Detection Systems: A Systematic Review,” International Journal of Information Technology and Decision Making, Jul. 2022, doi: 10.1142/S021962202230004X.
H. A. Alsattar, S. G. T. Allah, M. S. G. Khalil, and A. R. A. Aljohani, “Three-way decision-based conditional probabilities by opinion scores and Bayesian rules in circular-Pythagorean fuzzy sets for developing sustainable smart living framework,” Information Sciences (New York), vol. 649, p. 119681, Nov. 2023, doi: 10.1016/j.ins.2023.119681.
U. S. Mahmoud, M. S. M. W. Ahmed, F. M. T. Hamad, and F. M. Z. Ghazali, “DAS benchmarking methodology based on FWZIC II and FDOSM II to support industrial community characteristics in the design and implementation of advanced driver assistance systems in vehicles,” Journal of Ambient Intelligence and Humanized Computing, 2022, doi: 10.1007/s12652-022-04201-4.
S. Qahtan, H. A. Alsattar, A. A. Zaidan, M. Deveci, D. Pamucar, and L. Martinez, “A comparative study of evaluating and benchmarking sign language recognition system-based wearable sensory devices using a single fuzzy set,” Knowledge-Based Systems, p. 110519, Mar. 2023, doi: 10.1016/J.KNOSYS.2023.110519.
H. A. Ibrahim, A. A. Zaidan, S. Qahtan, and B. B. Zaidan, “Sustainability assessment of palm oil industry 4.0 technologies in a circular economy applications based on interval-valued Pythagorean fuzzy rough set-FWZIC and EDAS methods,” Applied Soft Computing, p. 110073, Feb. 2023, doi: 10.1016/J.ASOC.2023.110073.
D. Tešić and D. Marinković, “Application of fermatean fuzzy weight operators and MCDM model DIBR-DIBR II-NWBM-BM for efficiency-based selection of a complex combat system,” Journal of Decision Analytics and Intelligent Computing, vol. 3, no. 1, pp. 243-256, Dec. 2023, doi: 10.31181/10002122023t.
N. Mourad, L. R. Martínez, and R. I. Greiner, “Optimising Control Engineering Tools Using Digital Twin Capabilities and Other Cyber-physical Metaverse Manufacturing System Components,” IEEE Transactions on Consumer Electronics, pp. 1-1, 2023, doi: 10.1109/TCE.2023.3326047.
H. Ghailani, A. H. Khosravi, S. S. Hosseini, and M. S. Karim, “Developing sustainable management strategies in construction and demolition wastes using a q-rung orthopair probabilistic hesitant fuzzy set-based decision modelling approach,” Applied Soft Computing, p. 110606, Jul. 2023, doi: 10.1016/j.asoc.2023.110606.
S. Lee and K.-K. Seo, “A Hybrid Multi-Criteria Decision-Making Model for a Cloud Service Selection Problem Using BSC, Fuzzy Delphi Method and Fuzzy AHP,” Wireless Personal Communications, vol. 86, no. 1, pp. 57-75, Jan. 2016, doi: 10.1007/s11277-015-2976-z.
R. K. Tiwari, R. Kumar, G. Baranwal, and R. Buyya, “Decision making framework for heterogeneous QoS information: an application to cloud service selection,” Journal of Ambient Intelligence and Humanized Computing, vol. 14, no. 3, pp. 2915-2934, Mar. 2023, doi: 10.1007/s12652-023-04532-w.
A. A. Zaidan, H. A. Alsattar, S. Qahtan, M. Deveci, D. Pamucar, and M. Hajiaghaei-Keshteli, “Uncertainty Decision Modeling Approach for Control Engineering Tools to Support Industrial Cyber-Physical Metaverse Smart Manufacturing Systems,” IEEE Systems Journal, pp. 1-12, 2023, doi: 10.1109/JSYST.2023.3266842.
H. A. Alsattar, S. H. Moosavirad, S. A. M. Asadi, and F. B. Safavi, “Developing deep transfer and machine learning models of chest X-ray for diagnosing COVID-19 cases using probabilistic single-valued neutrosophic hesitant fuzzy,” Expert Systems with Applications, vol. 236, p. 121300, Feb. 2024, doi: 10.1016/j.eswa.2023.121300.
S. S. Moridi, S. H. Moosavirad, M. Mirhosseini, H. Nikpour, and A. Mokhtari, “Prioritizing power outages causes in different scenarios of the global business network matrix,” Decision Making: Applications in Management and Engineering, vol. 6, no. 1, pp. 321-340, Apr. 2023, doi: 10.31181/dmame0301072022m.
R. R. Kumar, S. Mishra, and C. Kumar, “Prioritizing the solution of cloud service selection using integrated MCDM methods under Fuzzy environment,” Journal of Supercomputing, vol. 73, no. 11, pp. 4652-4682, Nov. 2017, doi: 10.1007/s11227-017-2039-1.
R. R. Kumar, S. Mishra, and C. Kumar, “Prioritizing the solution of cloud service selection using integrated MCDM methods under Fuzzy environment,” Journal of Supercomputing, vol. 73, no. 11, pp. 4652-4682, Nov. 2017, doi: 10.1007/s11227-017-2039-1.
D. Trabay, A. Asem, I. El-Henawy, and W. Gharibi, “A hybrid technique for evaluating the trust of cloud services,” International Journal of Information Technology, vol. 13, no. 2, pp. 687-695, Apr. 2021, doi: 10.1007/s41870-020-00609-3.
R. R. Kumar, M. Shameem, and C. Kumar, “A computational framework for ranking prediction of cloud services under fuzzy environment,” Enterprise Information Systems, vol. 16, no. 1, pp. 167-187, Jan. 2022, doi: 10.1080/17517575.2021.1889037.
O. Sohaib, M. Naderpour, W. Hussain, and L. Martinez, “Cloud computing model selection for e-commerce enterprises using a new 2-tuple fuzzy linguistic decision-making method,” Computers & Industrial Engineering, vol. 132, pp. 47-58, Jun. 2019, doi: 10.1016/j.cie.2019.04.020.
N. Ghorui, A. P. Mishra, A. K. Sharma, S. Pandey, and P. K. Sahu, “Selection of cloud service providers using MCDM methodology under intuitionistic fuzzy uncertainty,” Soft Computing, vol. 27, no. 5, pp. 2403-2423, Mar. 2023, doi: 10.1007/s00500-022-07772-8.
T. T, C. Kalaiarasan, and K. A. Venkatesh, “Cloud Service Provider Selection Using Fuzzy TOPSIS,” in 2020 IEEE International Conference for Innovation in Technology (INOCON), IEEE, Nov. 2020, pp. 1-5, doi: 10.1109/INOCON50539.2020.9298207.
T. Thasni, C. Kalaiarasan, and K. A. Venkatesh, “Service Measurement Index-Based Cloud Service Selection Using Order Preference by Similarity to Ideal Solution Based on Intuitionistic Fuzzy Values,” in Lecture Notes in Computer Science, vol. 12916, pp. 225-238, 2022, doi: 10.1007/978-3-030-78750-9_16.
R. K. Tiwari and R. Kumar, “A framework for prioritizing cloud services in neutrosophic environment,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 6, pp. 3151-3166, Jun. 2022, doi: 10.1016/j.jksuci.2020.05.009.
T. Thasni, C. Kalaiarasan, and K. A. Venkatesh, “Cloud Provider Selection Based on Accountability and Security Using Interval-Valued Fuzzy TOPSIS,” International Journal of Decision Support System Technology, vol. 14, no. 1, pp. 1-15, Nov. 2021, doi: 10.4018/IJDSST.286684.
T. Yang, Q. Zhang, X. Wan, X. Li, Y. Wang, and W. Wang, “Comprehensive ecological risk assessment for semi-arid basin based on conceptual model of risk response and improved TOPSIS model-a case study of Wei River Basin, China,” Science of the Total Environment, vol. 719, p. 137502, 2020, doi: 10.1016/j.scitotenv.2020.137502.
Y. Zhao, H. Su, J. Wan, D. Feng, X. Gou, and B. Yu, “Complementarity Evaluation Index System and Method of Multiple Power Sources,” in 2020 IEEE Student Conference on Electric Machines and Systems (SCEMS), IEEE, 2020, pp. 200-206, doi: 10.1109/SCEMS48876.2020.9352432.
M. Lin, Z. Chen, Z. Xu, X. Gou, and F. Herrera, “Score function based on concentration degree for probabilistic linguistic term sets: An application to TOPSIS and VIKOR,” Information Sciences, vol. 551, pp. 270-290, 2021, doi: 10.1016/j.ins.2020.10.061.
X. Yu, X. Wu, and T. Huo, “Combine MCDM methods and PSO to evaluate economic benefits of high-tech zones in China,” Sustainability (Switzerland), vol. 12, no. 18, Sep. 2020, doi: 10.3390/SU12187833.
Z. Ding, Z. Jiang, H. Zhang, W. Cai, and Y. Liu, “An integrated decision-making method for selecting machine tool guideways considering remanufacturability,” International Journal of Computer Integrated Manufacturing, vol. 33, no. 7, pp. 686-700, 2020, doi: 10.1080/0951192X.2018.1550680.
L. Wang, F. Yan, F. Wang, and Z. Li, “FMEA-CM based quantitative risk assessment for process industries-A case study of coal-to-methanol plant in China,” Process Safety and Environmental Protection, vol. 149, pp. 299-311, 2021, doi: 10.1016/j.psep.2020.10.052.
A. K. Singh, S. Avikal, K. C. Nithin Kumar, M. Kumar, and P. Thakura, “A fuzzy-AHP and M - TOPSIS based approach for selection of composite materials used in structural applications,” Materials Today: Proceedings, vol. 26, pp. 3119-3123, 2019, doi: 10.1016/j.matpr.2020.02.644.
L. Lv, Z. Deng, H. Meng, T. Liu, and L. Wan, “A multi-objective decision-making method for machining process plan and an application,” Journal of Cleaner Production, vol. 260, p. 121072, 2020, doi: 10.1016/j.jclepro.2020.121072.
B. Wu, M. Lu, W. Huang, Y. Lan, Y. Wu, and Z. Huang, “A Case Study on the Construction Optimization Decision Scheme of Urban Subway Tunnel Based on the TOPSIS Method,” KSCE Journal of Civil Engineering, vol. 24, no. 11, pp. 3488-3500, 2020, doi: 10.1007/s12205-020-1290-9.
X. Zhang, J. Lu, and Y. Peng, “Hybrid MCDM Model for Location of Logistics Hub: A Case in China under the Belt and Road Initiative,” IEEE Access, vol. 9, pp. 41227-41245, 2021, doi: 10.1109/ACCESS.2021.3065100.
J. Liu, W. Liu, L. Jin, T. Tu, and Y. Ding, “A performance evaluation framework of electricity markets in China,” in Proceedings - 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE 2020), 2020, pp. 1043-1048, doi: 10.1109/ACPEE48638.2020.9136486.
Y. Deng et al., “Thermo-chemical water splitting: Selection of priority reversible redox reactions by multi-attribute decision making,” Renewable Energy, vol. 170, pp. 800-810, 2021, doi: 10.1016/j.renene.2021.02.009.
R. Ran and B. J. Wang, “Combining grey relational analysis and TOPSIS concepts for evaluating the technical innovation capability of high technology enterprises with fuzzy information,” Journal of Intelligent & Fuzzy Systems, vol. 29, no. 4, pp. 1301-1309, 2015, doi: 10.3233/IFS-141380.
Y. Zhao, H. Su, J. Wan, D. Feng, X. Gou, and B. Yu, “Complementarity Evaluation Index System and Method of Multiple Power Sources,” in 2020 IEEE 3rd Student Conference on Electrical Machines and Systems (SCEMS), IEEE, Dec. 2020, pp. 200-206, doi: 10.1109/SCEMS48876.2020.9352432.
M. J. Baqer, H. A. AlSattar, S. Qahtan, A. A. Zaidan, M. A. M. Izhar, and I. T. Abbas, “A Decision Modeling Approach for Data Acquisition Systems of the Vehicle Industry Based on Interval-Valued Linear Diophantine Fuzzy Set,” International Journal of Information Technology and Decision Making, Apr. 2023, doi: 10.1142/S0219622023500487.
O. S. Albahri, A. Al-Fuqaha, R. Kora, A. S. Albahri, A. S. Al-Dubai, H. M. Al-Mutairi, and N. Mohamed, “Multidimensional benchmarking of the active queue management methods of network congestion control based on extension of fuzzy decision by opinion score method,” International Journal of Intelligent Systems, vol. 36, no. 2, pp. 796-831, 2021, doi: 10.1002/int.22322.
N. H. Zardari, K. Ahmed, S. M. Shirazi, and Z. Bin Yusop, Weighting Methods and Their Effects on Multi-Criteria Decision Making Model Outcomes in Water Resources Management, Cham: Springer International Publishing, 2015, doi: 10.1007/978-3-319-12586-2.
S. A. Hajkowicz, G. T. McDonald, and P. N. Smith, “An Evaluation of Multiple Objective Decision Support Weighting Techniques in Natural Resource Management,” Journal of Environmental Planning and Management, vol. 43, no. 4, pp. 505-518, Jul. 2000, doi: 10.1080/713676575.
H. Lai, H. Liao, J. Šaparauskas, A. Banaitis, F. A. F. Ferreira, and A. Al-Barakati, “Sustainable Cloud Service Provider Development by a Z-Number-Based DNMA Method with Gini-Coefficient-Based Weight Determination,” Sustainability, vol. 12, no. 8, p. 3410, Apr. 2020, doi: 10.3390/su12083410.
Z. K. Mohammed et al., “Bitcoin network-based anonymity and privacy model for metaverse implementation in Industry 5.0 using linear Diophantine fuzzy sets,” Annals of Operations Research, Jun. 2023, doi: 10.1007/s10479-023-05421-3.
M. Sahoo, S. Sahoo, A. Dhar, and B. Pradhan, “Effectiveness evaluation of objective and subjective weighting methods for aquifer vulnerability assessment in urban context,” Journal of Hydrology, vol. 541, pp. 1303-1315, Oct. 2016, doi: 10.1016/j.jhydrol.2016.08.035.
D. Danesh, M. J. Ryan, and A. Abbasi, “Multi-criteria decision-making methods for project portfolio management: a literature review,” International Journal of Management and Decision Making, vol. 17, no. 1, p. 75, 2018, doi: 10.1504/IJMDM.2018.088813.
E. Nwokoagbara, A. K. Olaleye, and M. Wang, “Biodiesel from microalgae: The use of multi-criteria decision analysis for strain selection,” Fuel, vol. 159, pp. 241-249, Nov. 2015, doi: 10.1016/j.fuel.2015.06.074.
K. H. Abdulkareem et al., “A new standardisation and selection framework for real-time image dehazing algorithms from multi-foggy scenes based on fuzzy Delphi and hybrid multi-criteria decision analysis methods,” Neural Computing and Applications, vol. 33, no. 4, pp. 1029-1054, 2021, doi: 10.1007/s00521-020-05020-4.
O. S. Albahri, A. Al-Fuqaha, R. Kora, A. S. Albahri, A. S. Al-Dubai, H. M. Al-Mutairi, and N. Mohamed, “Combination of Fuzzy-Weighted Zero-Inconsistency and Fuzzy Decision by Opinion Score Methods in Pythagorean m-Polar Fuzzy Environment: A Case Study of Sign Language Recognition Systems,” International Journal of Information Technology and Decision Making, pp. 1-29, May 2022, doi: 10.1142/s0219622022500183.
D. Pamučar, Ž. Stević, and S. Sremac, “A new model for determining weight coefficients of criteria in MCDM models: Full Consistency Method (FUCOM),” Symmetry, vol. 10, no. 9, p. 393, Sep. 2018, doi: 10.3390/sym10090393.
R. Pelissari, M. C. Oliveira, A. J. Abackerli, S. Ben-Amor, and M. R. P. Assumpção, “Techniques to model uncertain input data of multi-criteria decision-making problems: a literature review,” International Transactions in Operational Research, vol. 28, no. 2, pp. 523-559, Mar. 2021, doi: 10.1111/itor.12598.
L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338-353, Jun. 1965, doi: 10.1016/S0019-9958(65)90241-X.
K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 20, no. 1, pp. 87-96, Aug. 1986, doi: 10.1016/S0165-0114(86)80034-3.
R. R. Yager, “Pythagorean fuzzy subsets,” Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting, IFSA/NAFIPS 2013, pp. 57-61, 2013, doi: 10.1109/IFSA-NAFIPS.2013.6608375.
R. R. Yager, “Pythagorean membership grades in multicriteria decision making,” IEEE Transactions on Fuzzy Systems, vol. 22, no. 4, pp. 958-965, 2014, doi: 10.1109/TFUZZ.2013.2278989.
T. Senapati and R. R. Yager, “Fermatean fuzzy sets,” Journal of Ambient Intelligence and Humanized Computing, vol. 11, no. 2, pp. 663-674, 2020, doi: 10.1007/s12652-019-01377-0.
S. Biswas, D. Pamucar, S. Kar, and S. S. Sana, “A New Integrated FUCOM-CODAS Framework with Fermatean Fuzzy Information for Multi-Criteria Group Decision-Making,” Symmetry, vol. 13, no. 12, p. 2430, Dec. 2021, doi: 10.3390/sym13122430.
L. Sun, J. Ma, Y. Zhang, H. Dong, and F. K. Hussain, “Cloud-FuSeR: Fuzzy ontology and MCDM based cloud service selection,” Future Generation Computer Systems, vol. 57, pp. 42-55, Apr. 2016, doi: 10.1016/j.future.2015.11.025.
K. A. Alam, R. Ahmed, F. S. Butt, S.-G. Kim, and K.-M. Ko, “An Uncertainty-aware Integrated Fuzzy AHP-WASPAS Model to Evaluate Public Cloud Computing Services,” Procedia Computer Science, vol. 130, pp. 504-509, 2018, doi: 10.1016/j.procs.2018.04.068.
S. Qahtan, K. Yatim, M. H. Osman, H. Zulzalil, M. Luqman, and M. Zakaria, “A Decision Cloud Ranking Approach Based on Privacy and Security in Blockchain E-Health Industry 4.0 Systems,” Journal of Techniques, vol. 5, no. 4, pp. 1-15, 2023, doi: 10.51173/jt.v5i4.1464.
M. T. Mohammed, M. S. Shubber, N. S. Jalood, A. N. Jasim, A. H. Shareef, and S. Garfan, “Intelligent Approach for School Teacher Recruitment: Distributing IT Subjects Based on Multiple Attributes,” Applications of Modelling and Simulation, vol. 7, pp. 100-110, 2023.
I. Patiniotakis, S. Rizou, Y. Verginadis, and G. Mentzas, “Managing Imprecise Criteria in Cloud Service Ranking with a Fuzzy Multi-criteria Decision Making Method,” in European Conference on Service-Oriented and Cloud Computing. ESOCC 2013. Lecture Notes in Computer Science, 2013, pp. 34-48. doi: 10.1007/978-3-642-40651-5_4.
S. Le, H. Dong, F. K. Hussain, O. K. Hussain, J. Ma, and Y. Zhang, “Multicriteria decision making with fuzziness and criteria interdependence in cloud service selection,” in 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE, Jul. 2014, pp. 1929-1936. doi: 10.1109/FUZZ-IEEE.2014.6891892.
A. Hussain, J. Chun, and M. Khan, “A novel framework towards viable Cloud Service Selection as a Service (CSSaaS) under a fuzzy environment,” Future Generation Computer Systems, vol. 104, pp. 74-91, Mar. 2020, doi: 10.1016/j.future.2019.09.043.
N. Chauhan, R. Agarwal, K. Garg, and T. Choudhury, “Redundant Iaas Cloud Selection With Consideration Of Multi Criteria Decision Analysis,” Procedia Computer Science, vol. 167, pp. 1325-1333, 2020, doi: 10.1016/j.procs.2020.03.448.
S. Agrawal and P. Tripathi, “Intuitionistic Fuzzy Score Function Based Multi-Criteria Decision Making Method for Selection of Cloud Service Provider,” International Journal of Sensors, Wireless Communications and Control, vol. 10, no. 4, pp. 533-539, Dec. 2020, doi: 10.2174/2210327910666191220102849.
S. Ali, N. Ullah, M. F. Abrar, Z. Yang, and J. Huang, “Fuzzy Multicriteria Decision-Making Approach for Measuring the Possibility of Cloud Adoption for Software Testing,” Scientific Programming, vol. 2020, pp. 1-24, Apr. 2020, doi: 10.1155/2020/6597316.
O. Gireesha, N. Somu, K. Krithivasan, and S. S. V.S., “IIVIFS-WASPAS: An integrated Multi-Criteria Decision-Making perspective for cloud service provider selection,” Future Generation Computer Systems, vol. 103, pp. 91-110, Feb. 2020, doi: 10.1016/j.future.2019.09.053.
A. Chakraborty, M. Jindal, M. R. Khosravi, P. Singh, A. Shankar, and M. Diwakar, “A Secure IoT-Based Cloud Platform Selection Using Entropy Distance Approach and Fuzzy Set Theory,” Wireless Communications and Mobile Computing, vol. 2021, pp. 1-11, May 2021, doi: 10.1155/2021/6697467.
R. Kumari, A. R. Mishra, and D. K. Sharma, “Intuitionistic Fuzzy Shapley-TOPSIS Method for Multi-Criteria Decision Making Problems Based on Information Measures,” Recent Advances in Computer Science and Communications, vol. 14, no. 2, pp. 376-383, May 2021, doi: 10.2174/2213275912666190115162832.
S. Ahmad, S. Mehfuz, and J. Beg, “Fuzzy TOPSIS-Based Cloud Model to Evaluate Cloud Computing Services,” 2021, pp. 37-52. doi: 10.1007/978-981-16-0942-8_4.
E. G. Radhika and G. Sudha Sadasivam, “Budget optimized dynamic virtual machine provisioning in hybrid cloud using fuzzy analytic hierarchy process,” Expert Systems with Applications, vol. 183, p. 115398, Nov. 2021, doi: 10.1016/j.eswa.2021.115398.
M. Sujatha, K. Geetha, and P. Balakrishnan, “User-centric framework to facilitate trustworthy cloud service provider selection based on fuzzy inference system,” Journal of Intelligent & Fuzzy Systems, vol. 41, no. 5, pp. 5629-5637, Nov. 2021, doi: 10.3233/JIFS-189883.
T. Thaha, K. C., and V. K. A., “Cloud Service Provider Selection Using Fuzzy Data Envelopment Analysis Based on SMI Attributes,” International Journal of Fuzzy System Applications, vol. 11, no. 4, pp. 1-24, Oct. 2022, doi: 10.4018/IJFSA.312239.
R. Z. Yasmina and H. Fethallah, “Uncertain service selection using hesitant fuzzy sets and grey wolf optimisation,” International Journal of Web Engineering and Technology, vol. 17, no. 3, p. 250, 2022, doi: 10.1504/IJWET.2022.127870.
T. Senapati and R. R. Yager, “Some New Operations Over Fermatean Fuzzy Numbers and Application of Fermatean Fuzzy WPM in Multiple Criteria Decision Making,” Informatica, vol. 30, no. 2, pp. 391-412, 2019.
T. Senapati and R. R. Yager, “Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision-making methods,” Engineering Applications of Artificial Intelligence, vol. 85, pp. 112-121, 2019, doi: 10.1016/j.engappai.2019.05.012.
M. Keshavarz-Ghorabaee, M. Amiri, M. Hashemi-Tabatabaei, E. K. Zavadskas, and A. Kaklauskas, “A New Decision-Making Approach Based on Fermatean Fuzzy Sets and WASPAS for Green Construction Supplier Evaluation,” Mathematics, vol. 8, no. 12, p. 2202, Dec. 2020, doi: 10.3390/math8122202.
M. Kirişci, “New cosine similarity and distance measures for Fermatean fuzzy sets and TOPSIS approach,” Knowledge and Information Systems, vol. 65, no. 2, pp. 855-868, Feb. 2023, doi: 10.1007/s10115-022-01776-4.
A. Alamleh et al., “Federated learning for IoMT applications: A standardization and benchmarking framework of intrusion detection systems,” IEEE Journal of Biomedical and Health Informatics, pp. 1-1, 2022, doi: 10.1109/JBHI.2022.3167256.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) YUJOR

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.