Entropy-based analysis using linear diophantine multi fuzzy soft sets: A DEA approach for improved decision systems

Authors

DOI:

https://doi.org/10.2298/YJOR240315055K

Keywords:

Linear diophantine multi-fuzzy soft set, entropy measure, DEA, energy efficiency

Abstract

This article unveils an innovative approach to improving the entropy measure analysis of Decision Making Units(DMUs) in the context of linear Diophantine multifuzzy soft sets. Though multi-fuzzy soft sets combine multi-dimensional values and parameters to create a hybrid model with considerable versatility, linear diophantine fuzzy sets, a noteworthy extension of conventional fuzzy sets, are also utilized to ease prior constraints. Entropy is a fundamental concept in fuzzy set theory and a useful tool for quantifying the level of fuzziness seen in fuzzy sets. We employ entropy measurements to quantify the weights of input and output components in data envelopment analysis, a non-parametric method frequently used in multi-criteria decision-making. The novelty of this study is integrating the weight determination in Data Envelopment Analysis (DEA) by introducing novel entropy measures with linear Diophantine multi-fuzzy soft sets. The significance of DEA is found in its strong analytical capabilities, which facilitate improved decision-making, boost operational effectiveness, and encourage ongoing development in a variety of industries. To illustrate the significance of our suggested approach, we offer a numerical example of building energy efficiency using a DEA model. This work contributes to fuzzy set theory and DEA techniques, offering a helpful tool for evaluating and enhancing complex decision systems.

References

A. Charnes, W. Cooper, and E. Rhodes, “Measuring the efficiency of decision making units,” European Journal of Operational Research, vol. 2, no. 6, pp. 429-444, 1978. doi: 10.1016/0377-2217(78)90138-8

K. K. Mohanta and O. Toragay, “Enhanced performance evaluation through neutrosophic data envelopment analysis leveraging pentagonal neutrosophic numbers,” Journal of Operational and Strategic Analytics, 2023. doi: 10.56578/josa010204

K. K. Mohanta and D. S. Sharanappa, “Neutrosophic data envelopment analysis: a comprehensive review and current trends,” Opt. [Internet], vol. 1, pp. 10-22, 01 2024.

N. Ekram Nosratian and M. T. Taghavi Fard, “A proposed model for the assessment of supply chain management using dea and knowledge management,” Computational Algorithms and Numerical Dimensions, vol. 2, no. 3, pp. 136-147, 2023. doi: 10.22105/cand.2023.191008

J. Gerami and M. R. Mozaffari, “Additive slacks-based measure of efficiency for dealing with undesirable outputs based on dea-r model,” Big Data and Computing Visions, vol. 1, no. 1, pp. 15-23, 2021. doi: 10.22105/bdcv.2021.142082

R. Rasinojehdehi and S. Najafi, “Integrating pca and dea techniques for strategic assessment of network security,” Computational Algorithms and Numerical Dimensions, vol. 2, no. 1, pp. 23-34, 2023. doi: 10.22105/cand.2023.424893.1076

A. Nosrat and G. Roozbehi, “A non-radial dea model to determine the performance of the basic two-stage systems,” Journal of Decisions and Operations Research, vol. 4, no. 4, pp. 324-331, 2020. doi: 10.22105/dmor.2020.104022

R. Rasinojehdehi and H. Valami, “A comprehensive neutrosophic model for evaluating the efficiency of airlines based on sbm model of network dea,” Decision Making: Applications in Management and Engineering, vol. 6, pp. 880-906, 08 2023. doi: 10.31181/dma622023729

J. Sengupta, “A fuzzy system approach in data envelopment analysis,” Computers Mathematics With Applications - COMPUT MATH APPL, vol. 24, pp. 259-266, 10 1992. doi: 10.1016/0898-1221(92)90203-T

L. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338-353, 1965. doi: 10.1016/S0019-9958(65)90241-X

M. Dotoli, N. Epicoco, M. Falagario, and F. Sciancalepore, “A cross-efficiency fuzzy data envelopment analysis technique for performance evaluation of decision making units under uncertainty,” Computers Industrial Engineering, vol. 79, 11 2014. doi: 10.1016/j.cie.2014.10.026

C. Kao and S.-T. Liu, “Liu, s.t.: Fuzzy efficiency measures in data envelopment analysis. fuzzy set. syst. 113, 427-437,” Fuzzy Sets and Systems, vol. 113, pp. 427-437, 08 2000. doi: 10.1016/S0165-0114(98)00137-7

H.-Y. Tsai, C. W. Chang, and H.-L. Lin, “Fuzzy hierarchy sensitive with delphi method to evaluate hospital organization performance,” Expert Systems with Applications, vol. 37, pp. 5533-5541, 08 2010. doi: 10.1016/j.eswa.2010.02.099

H. Moheb-Alizadeh, S. Rasouli, and R. Tavakkoli-Moghaddam, “The use of multi-criteria data envelopment analysis (mcdea) for location-allocation problems in a fuzzy environment,” Expert Syst. Appl., vol. 38, pp. 5687-5695, 05 2011. doi: 10.1016/j.eswa.2010.10.065

I. Ucal Sari and U. Ak, “Machine efficiency measurement in industry 4.0 using fuzzy data envelopment analysis,” Journal of Fuzzy Extension and Applications, vol. 3, no. 2, pp. 177- 191, 2022. doi: 10.22105/jfea.2022.326644.1199

L. Zou, X. Wen, and Y. Wang, “Linguistic truth-valued intuitionistic fuzzy reasoning with applications in human factors engineering,” Information Sciences, vol. 327, 08 2015. doi: 10.1016/j.ins.2015.07.048

K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 20, no. 1, p. 87-96, Aug 1986. doi: 10.1016/s0165-0114(86)80034-3

J. Puri and S. Yadav, “Intuitionistic fuzzy data envelopment analysis: An application to the banking sector in india,” Expert Systems with Applications, vol. 42, 02 2015. doi: 10.1016/j.eswa.2015.02.014

R. Tavakkoli-Moghaddam and M. S, “Finding a common set of weights by the fuzzy entropy compared with data envelopment analysis - a case study,” International Journal of Industrial Engineering Production Research, vol. 21, 09 2010.

A. Arya and S. Yadav, “Development of intuitionistic fuzzy data envelopment analysis models and intuitionistic fuzzy input-output targets,” Soft Computing, vol. 23, 09 2019. doi: 10.1007/s00500-018-3504-3

A. Mahmoodirad, D. Pamucar, and S. Niroomand, “A new intuitionistic fuzzy scheme of data envelopment analysis for evaluating rural comprehensive health service centers,” Socio- Economic Planning Sciences, vol. 95, p. 102004, 2024. doi: 10.1016/j.seps.2024.102004

M. A. Sahil and Q. D. Lohani, “Comprehensive intuitionistic fuzzy network data envelopment analysis incorporating undesirable outputs and shared resources,” MethodsX, vol. 12, p. 102710, 2024. doi: 10.1016/j.mex.2024.102710

M. A. Pereira and A. S. Camanho, “The ‘healthcare access and quality index’ revisited: A fuzzy data envelopment analysis approach,” Expert Systems with Applications, vol. 245, p. 123057, 2024. doi: 10.1016/j.eswa.2023.123057

M. A. Sahil, M. Kaushal, and Q. M. D. Lohani, “A novel pythagorean approach based sineshaped fuzzy data envelopment analysis model: An assessment of indian public sector banks,” Computational Economics, pp. 1-23, 04 2024. doi: 10.1007/s10614-024-10603-7

L. Huang and Chen, “A novel approach for efficiency evaluation in data envelopment analysis framework with fuzzy stochastic variables,” International Journal of Fuzzy Systems, 09 2024. doi: 10.1007/s40815-024-01811-2

J. Zhu, L. Wan, H. Zhao, L. Yu, and S. Xiao, “Evaluation of the integration of industrialization and information-based entropy ahp-cross-efficiency dea model,” Chinese Management Studies, vol. 18, 01 2023. doi: 10.1108/CMS-03-2022-0098

K. Raj, S. Srinivasan, and C. Nandakumar, “Cost efficiency analysis of public sector general insurers by fuzzy dea approach,” OPSEARCH, 06 2024. doi: 10.1007/s12597-024-00771-3

K. Mohanta and D. Sharanappa, “The spherical fuzzy data envelopment analysis (sf-dea): A novel approach for efficiency analysis,” 10 2022. doi: 10.1063/5.0199519

R. Kiani-Ghalehno and A. Mahmoodirad, “Providing bank branch ranking algorithm with fuzzy data, using a combination of two methods dea and mcdm,” Journal of Ambient Intelligence and Humanized Computing, vol. 15, pp. 1-12, 07 2024. doi: 10.1007/s12652-024- 04833-8

R. R. Yager, “Pythagorean membership grades in multicriteria decision making,” IEEE Transactions on Fuzzy Systems, vol. 22, no. 4, p. 958-965, Aug 2014. doi: 10.1109/tfuzz.2013.2278989

Yager and R. R., “Generalized orthopair fuzzy sets,” IEEE Transactions on Fuzzy Systems, vol. 25, no. 5, p. 1222-1230, Oct 2017. doi: 10.1109/tfuzz.2016.2604005

M. Riaz and M. R. Hashmi, “Linear diophantine fuzzy set and its applications towards multiattribute decision-making problems,” Journal of Intelligent Fuzzy Systems, vol. 37, no. 4, p. 5417-5439, Oct 2019. doi: 10.3233/jifs-190550

J. Kannan, V. Jayakumar, M. Pethaperumal, and A. B. Kather Mohideen, “An intensified linear diophantine fuzzy combined dematel framework for the assessment of climate crisis,” Stochastic Environmental Research and Risk Assessment, Jan 2024. doi: 10.1007/s00477-023-02618-7

K. Jeevitha, H. Garg, J. Vimala, H. Aljuaid, and A.-H. Abdel-Aty, “Linear diophantine multifuzzy aggregation operators and its application in digital transformation,” Journal of Intelligent Fuzzy Systems, vol. 45, no. 2, p. 3097-3107, Aug 2023. doi: 10.3233/jifs-223844

V. Jayakumar, A. B. K. Mohideen, M. H. Saeed, H. Alsulami, A. Hussain, and M. Saeed, “Development of complex linear diophantine fuzzy soft set in determining a suitable agridrone for spraying fertilizers and pesticides,” IEEE Access, vol. 11, p. 9031-9041, 2023. doi: 10.1109/access.2023.3239675

A. Iampan, G. S. García, M. Riaz, H. M. Athar Farid, and R. Chinram, “Linear diophantine fuzzy einstein aggregation operators for multi-criteria decision-making problems,” Journal of Mathematics, vol. 2021, p. 1-31, Jul 2021. doi: 10.1155/2021/5548033

S. Ayub, M. Shabir, M. Riaz, M. Aslam, and R. Chinram, “Linear diophantine fuzzy relations and their algebraic properties with decision making,” Symmetry, vol. 13, no. 6, p. 945, May 2021. doi: 10.3390/sym13060945

M. Riaz, M. R. Hashmi, H. Kalsoom, D. Pamucar, and Y.-M. Chu, “Linear diophantine fuzzy soft rough sets for the selection of sustainable material handling equipment,” Symmetry, vol. 12, no. 8, p. 1215, Jul 2020. doi: 10.3390/sym12081215

M. Riaz, H. M. A. Farid, M. Aslam, D. Pamucar, and D. Bozanić, “Novel approach for thirdparty reverse logistic provider selection process under linear diophantine fuzzy prioritized aggregation operators,” Symmetry, vol. 13, no. 7, p. 1152, Jun 2021. doi: 10.3390/sym13071152

H. M. A. Farid, M. Riaz, M. J. Khan, P. Kumam, and K. Sitthithakerngkiet, “Sustainable thermal power equipment supplier selection by einstein prioritized linear diophantine fuzzy aggregation operators,” AIMS Mathematics, vol. 7, no. 6, p. 11201-11242, 2022. doi: 10.3934/math.2022627

M. Riaz, H. M. A. Farid, W. Wang, and D. Pamucar, “Interval-valued linear diophantine fuzzy frank aggregation operators with multi-criteria decision-making,” Mathematics, vol. 10, no. 11, p. 1811, May 2022. doi: 10.3390/math10111811

V. Jayakumar, J. Kannan, N. Kausar, M. Deveci, and X. Wen, “Multicriteria group decision making for prioritizing iot risk factors with linear diophantine fuzzy sets and marcos method,” Granular Computing, vol. 9, no. 3, May 2024. doi: 10.1007/s41066-024-00480-8

J. Kannan, V. Jayakumar, M. Saeed, T. Alballa, H. A. E.-W. Khalifa, and H. G. Gomaa, “Linear diophantine fuzzy clustering algorithm based on correlation coefficient and analysis on logistic efficiency of food products,” IEEE Access, vol. 12, p. 34889-34902, 2024. doi: 10.1109/access.2024.3371986

S. Petchimuthu, M. Riaz, and H. Kamaci, “Correlation coefficient measures and aggregation operators on interval-valued linear diophantine fuzzy sets and their applications,” Computational and Applied Mathematics, vol. 41, no. 8, Nov 2022. doi: 10.1007/s40314-022-02077-w

D. Molodtsov, “Soft set theory,” computers and Mathematics with applications, vol. 37, pp. 19-31, 1999.

K. Maji, P., R. Biswas, and A. Roy, “Fuzzy soft set,” Journal of Fuzzy Mathematics, vol. 9, pp. 589-602, 2001.

K. Maji P., R. Biswas, and A. Roy, “Intuitionistic fuzzy soft set,” Journal of Fuzzy Mathematics, vol. 9, pp. 677-692, 2001.

J. Vimala, P. Mahalakshmi, A. U. Rahman, and M. Saeed, “A customized topsis method to rank the best airlines to fly during covid-19 pandemic with q-rung orthopair multifuzzy soft information,” Soft Computing, vol. 27, no. 20, p. 14571-14584, Aug 2023. doi: 10.1007/s00500-023-08976-2

M. Pethaperumal, V. Jeyakumar, J. Kannan, and A. Banu, “An algebraic analysis on exploring q-rung orthopair multi-fuzzy sets,” Journal of Fuzzy Extension and Applications, vol. 4, no. 3, pp. 235-245, 2023. doi: 10.22105/jfea.2023.408513.1302

J. Vimala, H. Garg, and K. Jeevitha, “Prognostication of myocardial infarction using lattice ordered linear diophantine multi-fuzzy soft set,” International Journal of Fuzzy Systems, vol. 26, no. 1, p. 44-59, Aug 2023. doi: 10.1007/s40815-023-01574-2

J. Kannan, V. Jayakumar, and A. B. Saeid, “Lattice algebraic structures on ldmfs domains,” New Mathematics and Natural Computation, p. 1-21, Mar 2024. doi: 10.1142/s1793005725500218

J. KANNAN and V. JAYAKUMAR, “Sustainable method for tender selection using linear diophantine multi-fuzzy soft set,” Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics, vol. 72, no. 4, p. 976-991, Jul 2023. doi: 10.31801/cfsuasmas. 1255830

J. Kannan, V. Jayakumar, M. Pethaperumal, and N. S. Shanmugam, “Linear diophantine multifuzzy soft similarity measures: An analysis on alternative-fuel,” Journal of Intelligent Fuzzy Systems, p. 1-13, Apr 2024. doi: 10.3233/jifs-219415

A. Pandipriya, D. J, and S. S. Begam, “Lattice ordered interval-valued hesitant fuzzy soft sets in decision making problem,” International Journal of Engineering Technology, vol. 7, pp. 52-55, 01 2018. doi: 10.14419/ijet.v7i1.3.9226

J. A. Colombo, T. Akhter, P. Wanke, M. A. K. Azad, Y. Tan, S. A. Edalatpanah, and J. Antunes, “Interplay of cryptocurrencies with financial and social media indicators: An entropyweighted neural-madm approach,” Journal of Operational and Strategic Analytics, 2023. doi: 10.56578/josa010402

D. L. A and T. S, “A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory,” Information and Control, vol. 20, no. 4, pp. 301-312, 1972. doi: 10.1016/S0019-9958(72)90199-4

M. HIGASHI and G. KLIR, “On measures of fuzziness and fuzzy complements,” International Journal of General Systems - INT J GEN SYSTEM, vol. 8, pp. 169-180, 04 2008. doi: 10.1080/03081078208547446

A. Kaufmann and A. P. Bonaert, “Introduction to the theory of fuzzy subsets-vol. 1: Fundamental theoretical elements,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 7, no. 6, pp. 495-496, 1977. doi: 10.1109/TSMC.1977.4309751

E. Trillas and T. Riera, “Entropies in finite fuzzy sets,” Inf. Sci., vol. 15, pp. 159-168, 07 1978. doi: 10.1016/0020-0255(78)90005-1

S. Loo, “Measures of fuzziness,” Cybernetica, vol. 20, 01 1977.

L. Xuecheng, “Entropy, distance measure and similarity measure of fuzzy sets and their relations,” Fuzzy Sets and Systems, vol. 52, pp. 305-318, 03 1994. doi: 10.1016/0165- 0114(92)90239-Z

J.-L. Fan and Y.-L. Ma, “Some new fuzzy entropy formulas,” Fuzzy Sets and Systems, vol. 128, pp. 277-284, 06 2002. doi: 10.1016/S0165-0114(01)00127-0

H.-y. Zhang, W. Zhang, and C. Mei, “Entropy of interval-valued fuzzy sets based on distance and its relationship with similarity measure,” Knowl.-Based Syst., vol. 22, pp. 449-454, 08 2009. doi: 10.1016/j.knosys.2009.06.007

P. Burillo and H. Bustince, “Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets,” Fuzzy Sets and Systems, vol. 78, no. 3, pp. 305-316, 1996. doi: 10.1016/0165- 0114(96)84611-2

E. Szmidt and J. Kacprzyk, “Entropy for intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 118, no. 3, pp. 467-477, 2001. doi: 10.1016/S0165-0114(98)00402-3

W. Zeng and H. Li, “Relationship between similarity measure and entropy of interval valued fuzzy sets,” Fuzzy Sets and Systems, vol. 157, no. 11, pp. 1477-1484, 2006. doi: 10.1016/j.fss.2005.11.020

W.-L. Hung and M.-S. Yang, “Fuzzy entropy on intuitionistic fuzzy sets,” International Journal of Intelligent Systems, vol. 21, no. 4, pp. 443-451, 2006. doi: 10.1002/int.20131

I. Vlachos and G. Sergiadis, “Subsethood, entropy, and cardinality for interval-valued fuzzy sets - an algebraic derivation,” Fuzzy Sets and Systems, vol. 158, pp. 1384-1396, 06 2007. doi: 10.1016/j.fss.2006.12.018

K. Qin and J. Yang, “Entropy of soft sets,” in International Conference on Computer Information Systems and Industrial Applications, 01 2015. doi: 10.2991/cisia-15.2015.213

Y. Jiang, Y. Tang, H. Liu, and Z. Chen, “Entropy on intuitionistic fuzzy soft sets and on interval-valued fuzzy soft sets,” Information Sciences: an International Journal, vol. 240, pp. 95-114, 08 2013. doi: 10.1016/j.ins.2013.03.052

Z. Liu, K. Qin, and Z. Pei, “Similarity measure and entropy of fuzzy soft sets,” TheScientific- WorldJournal, vol. 2014, p. 161607, 06 2014. doi: 10.1155/2014/161607

G. Selvachandran, P. Maji, R. Faisal, and A. Salleh, “Distance and distance induced intuitionistic entropy of generalized intuitionistic fuzzy soft sets,” Applied Intelligence, vol. 47, 07 2017. doi: 10.1007/s10489-016-0884-x

A. T M, S. John, and H. Garg, “A novel entropy measure of pythagorean fuzzy soft sets,” AIMS Mathematics, vol. 5, pp. 1050-1061, 01 2020. doi: 10.3934/math.20200073

A. Aydoğdu, “Novel linear diophantine fuzzy information measures based decision making approach using extended vikor method,” IEEE Access, vol. PP, pp. 1-1, 01 2023. doi: 10.1109/ACCESS.2023.3309913

A. Tsanas and A. Xifara, “Energy Efficiency,” UCI Machine Learning Repository, 2012, DOI: 10.24432/C51307.

Downloads

Published

2025-11-01

How to Cite

Kannan, J., Jayakumar, V., Kather, M. A. B., & Tamilvizhi, M. (2025). Entropy-based analysis using linear diophantine multi fuzzy soft sets: A DEA approach for improved decision systems. Yugoslav Journal of Operations Research, 35(4), 775–795. https://doi.org/10.2298/YJOR240315055K

Issue

Section

Research Articles